Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(2RS,8aRS)-6-Oxo-1,2,3,4,6,7,8,8a-octa-hydronaphthalene-2-carboxylic acid

Georgia Efthimiopoulos, Roger A. Lalancette and Hugh W. Thompson*

Carl A. Olson Memorial Laboratories, Department of Chemistry, Rutgers University, Newark, NJ 07102, USA
Correspondence e-mail: rogerlal@andromeda.rutgers.edu

Received 25 October 2008; accepted 30 October 2008
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.035 ; w R$ factor $=0.088 ;$ data-to-parameter ratio $=13.1$.

The title racemate, $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}$, aggregates in the crystal structure as acid-to-ketone $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding catemers whose components are glide-related. The relative stereochemistry at the carboxyl group arises spontaneously during the synthesis. Two intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ close contacts were found, both involving the acid group.

Related literature

For background information, see: Borthwick (1980). For synthetic details see: Finnegan \& Bachman (1965); House et al. (1965). For information on weak hydrogen bonds, see: Steiner (1997).

Experimental

Crystal data

$$
\begin{array}{ll}
\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} & \text { Monoclinic, } P 2_{1} / c \\
M_{r}=194.22 & a=6.2315(11) \AA
\end{array}
$$

$$
\begin{aligned}
& b=9.2296(16) \AA \\
& c=17.234(3) \AA \\
& \beta=93.366(3)^{\circ} \\
& V=989.5(3) \AA^{3} \\
& Z=4
\end{aligned}
$$

$\mathrm{Cu} K \alpha$ radiation
$\mu=0.77 \mathrm{~mm}^{-1}$
$T=100(2) \mathrm{K}$
$0.36 \times 0.31 \times 0.22 \mathrm{~mm}$

Data collection
Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2001)
$T_{\text {min }}=0.768, T_{\text {max }}=0.849$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
H atoms treated by a mixture of
$w R\left(F^{2}\right)=0.088$
$S=1.09$
1719 reflections
131 parameters

> 7466 measured reflections 1719 independent reflections 1684 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.028$
independent and constrained refinement
$\Delta \rho_{\text {max }}=0.22 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 1^{\text {i }}$	0.888 (19)	1.79 (2)	2.6797 (13)	174.8 (17)
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 2^{\text {ii }}$	1.00	2.40	3.3191 (15)	152
$\mathrm{C} 7-\mathrm{H} 7 A \cdots \mathrm{O} 2^{\text {iii }}$	0.99	2.47	3.3708 (15)	151
Symmetry codes $x,-y+\frac{3}{2}, z+\frac{1}{2}$.	(i) $x+1,-y+\frac{3}{2}, z-\frac{1}{2}$; (ii) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$; (iii)			

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors gratefully acknowledge support in the form of NSF-CRIF grant No. 0443538. HWT also thanks Professor Gree Loober Spoog for helpful discussions.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2720).

References

Borthwick, P. W. (1980). Acta Cryst. B36, 628-632.
Bruker (2005). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Finnegan, R. A. \& Bachman, P. L. (1965). J. Org. Chem. 30, 4145-4150.
House, H. O., Trost, B. M., Magin, R. W., Carlson, R. G., Franck, R. W. \& Rasmusson, G. H. (1965). J. Org. Chem. 30, 2513-2519.
Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Steiner, T. (1997). Chem. Commun. pp. 727-734.

supplementary materials

Acta Cryst. (2008). E64, o2292 [doi:10.1107/S1600536808035691]

(2RS,8aRS)-6-Oxo-1,2,3,4,6,7,8,8a-octahydronaphthalene-2-carboxylic acid

G. Efthimiopoulos, R. A. Lalancette and H. W. Thompson

Comment

Among ketocarboxylic acids, we have shown that the usually dominant dimerization can be disfavored by lowering molecular flexibility, as measured by the number of fully rotatable bonds present. Typically this results in increased occurrence of acid-to-ketone catemers, whose occurrence is also favored by fixed "anti-like" arrangements, in which carboxyl and ketone are aimed in opposite directions. In this context, we report here the title compound, (I), whose structure conforms to both of the above criteria.

Fig. 1 shows the asymmetric unit, whose only conformational options lie in the carboxyl side-chain, which is oriented $\left[\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 9-\mathrm{O} 2\right.$ torsion angle $\left.=-37.96(15)^{\circ}\right]$ so as to minimize steric interactions with H atoms at C 1 and C 3 .

The disordering of $\mathrm{C}-\mathrm{O}$ bond lengths and $\mathrm{C}-\mathrm{C}-\mathrm{O}$ angles often seen in carboxyl dimers becomes impossible when the H -bonding mode precludes the required averaging mechanisms. Because (I) is not dimeric the distances and angles here are fully ordered and thus typical of those in highly ordered dimeric carboxyls (Borthwick, 1980).

Fig. 2 shows the packing of the cell, with extra molecules included to illustrate the acid-to-ketone H -bonding scheme. Each carboxylic acid is linked to the ketone in a molecule glide related in the c direction. Glide relationships for intra-chain units in catemers is far less common than screw-related schemes. Each of the four molecules in the chosen cell participates in a separate H-bonding chain and these pass through the cell in counterdirectional pairs related by centrosymmetry, with the chains advancing by one cell in a and one-half cell in c for each H bond.

We characterize the geometry of H bonding to carbonyls using a combination of the $\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ angle and the $\mathrm{H} \cdots \mathrm{O}=\mathrm{C}-\mathrm{C}$ torsion angle. These describe the approach of the H atom to the receptor O in terms of its deviation from, respectively, $\mathrm{C}=\mathrm{O}$ axiality (ideal $=120^{\circ}$) and planarity with the carbonyl (ideal $=0^{\circ}$). In (I), these angles are $131.0(6) \& 0.6(8)^{\circ}$.

Within the $2.6 \AA$ range we standardly survey for $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ packing interactions (Steiner, 1997), two intermolecular close contacts were found, both involving O 2 , the carboxyl carbonyl (see table).

Experimental

Compound (I) was synthesized by the method of Finnegan \& Bachman (1965); crystallization from ethyl acetate yielded material suitable for X -ray, mp 418 K . The $\mathrm{C} 2 / \mathrm{C} 8$ a stereochemistry clearly represents the stabler of the two epimers possible and probably arises as the result of equilibrations during the synthesis (House et al., 1965).

The solid-state (KBr) infrared spectrum of (I) has $\mathrm{C}=\mathrm{O}$ absorptions at $1721 \& 1640 \mathrm{~cm}^{-1}$, with a peak separation typical of the shifts seen in catemers, due, respectively, to removal of H bonding from the acid $\mathrm{C}=\mathrm{O}$ and addition of H bonding to the ketone; an alkene peak appears at $1616 \mathrm{~cm}^{-1}$. $\mathrm{In} \mathrm{CHCl}_{3}$ solution, where dimers predominate, these bands appear, respectively, at 1708,1666 and $1622 \mathrm{~cm}^{-1}$.

supplementary materials

Refinement

All H atoms for (I) were found in electron-density difference maps. The positional parameters for the carboxyl H were allowed to refine but the $U_{\text {iso }}(\mathrm{H})$ was held at $1.5 U_{\mathrm{eq}}(\mathrm{O})$. The methylene, methine and vinyl Hs were placed in geometrically idealized positions and constrained to ride on their parent C atoms with $\mathrm{C}-\mathrm{H}$ distances of $0.99,1.00 \& 0.95 \AA$, respectively, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Figures

Fig. 1. The asymmetric unit of (I), with its numbering. Displacement ellipsoids are drawn at the 40% probability level.

Fig. 2. A partial packing diagram with extracellular molecules, illustrating the centrosymmetrically related pairs of acid-to-ketone H-bonding chains passing through the cell. All carbonbound H atoms are removed for clarity. Displacement ellipsoids are drawn at the 40% probability level.

(2RS,8aRS)-6-Oxo-1,2,3,4,6,7,8,8a-octahydronaphthalene-2- carboxylic acid

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}$
$M_{r}=194.22$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=6.2315$ (11) \AA
$b=9.2296(16) \AA$
$c=17.234(3) \AA$
$\beta=93.366(3)^{\circ}$
$V=989.5(3) \AA^{3}$
$Z=4$

Data collection

Bruker SMART CCD APEXII area-detector diffractometer
Radiation source: fine-focus sealed tube

> Monochromator: graphite
$T=100(2) \mathrm{K}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
$T_{\text {min }}=0.769, T_{\text {max }}=0.849$
$F_{000}=416$
$D_{\mathrm{x}}=1.304 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 418 K
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.54178 \AA$
Cell parameters from 7006 reflections
$\theta=4.8-67.1^{\circ}$
$\mu=0.77 \mathrm{~mm}^{-1}$
$T=100$ (2) K
Parallelepiped, colourless
$0.36 \times 0.31 \times 0.22 \mathrm{~mm}$

7466 measured reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.088$
$S=1.09$
1719 reflections
131 parameters
$l=-20 \rightarrow 20$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0417 P)^{2}+0.4167 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.22 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.20 \mathrm{e} \AA^{-3}$
Extinction correction: SHELXTL (Sheldrick, 2004), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0064 (8)

Special details

Experimental. crystal mounted on a Cryoloop using Paratone-N
Geometry. All e.s.d.'s (except for the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	$-0.28896(14)$	$0.72032(11)$	$0.52340(5)$	$0.0292(3)$
C1	$0.36320(19)$	$0.76724(13)$	$0.32544(7)$	$0.0191(3)$
H1A	0.2697	0.8459	0.3038	0.023^{*}
H1B	0.5053	0.8100	0.3405	0.023^{*}
O2	$0.41479(13)$	$0.84304(9)$	$0.16676(5)$	$0.0217(2)$
C2	$0.39130(18)$	$0.65372(13)$	$0.26199(7)$	$0.0176(3)$
H2	0.4969	0.5788	0.2816	0.021^{*}
O3	$0.61028(15)$	$0.64301(10)$	$0.15353(5)$	$0.0281(3)$
H3	$0.652(3)$	$0.689(2)$	$0.1116(11)$	0.042^{*}
C3	$0.17383(19)$	$0.58079(14)$	$0.24029(7)$	$0.0199(3)$
H3A	0.0716	0.6537	0.2178	0.024^{*}
H3B	0.1932	0.5052	0.2006	0.024^{*}
C4	$0.08193(19)$	$0.51220(13)$	$0.31220(7)$	$0.0200(3)$

H4A	-0.0631	0.4735	0.2978	0.024^{*}
H4B	0.1744	0.4299	0.3297	0.024^{*}
C4A	$0.06671(19)$	$0.61740(13)$	$0.37828(7)$	$0.0175(3)$
C5	$-0.11075(19)$	$0.62502(14)$	$0.41883(7)$	$0.0198(3)$
H5	-0.2346	0.5720	0.4009	0.024^{*}
C6	$-0.1206(2)$	$0.71159(14)$	$0.48942(7)$	$0.0210(3)$
C7	$0.0842(2)$	$0.78214(14)$	$0.52003(7)$	$0.0223(3)$
H7A	0.1681	0.7127	0.5534	0.027^{*}
H7B	0.0498	0.8668	0.5523	0.027^{*}
C8	$0.2190(2)$	$0.83140(14)$	$0.45355(7)$	$0.0219(3)$
H8A	0.1415	0.9091	0.4239	0.026^{*}
H8B	0.3566	0.8720	0.4754	0.026^{*}
C8A	$0.26523(18)$	$0.70674(13)$	$0.39857(7)$	$0.0181(3)$
H8A1	0.3744	0.6421	0.4257	0.022^{*}
C9	$0.47226(18)$	$0.72473(13)$	$0.19025(7)$	$0.0176(3)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0244(5)$	$0.0408(6)$	$0.0233(5)$	$0.0023(4)$	$0.0086(4)$	$-0.0059(4)$
C1	$0.0194(6)$	$0.0190(6)$	$0.0190(6)$	$-0.0020(5)$	$0.0018(5)$	$-0.0008(5)$
O2	$0.0236(5)$	$0.0198(5)$	$0.0219(4)$	$0.0021(3)$	$0.0031(3)$	$0.0030(4)$
C2	$0.0171(6)$	$0.0179(6)$	$0.0181(6)$	$0.0011(4)$	$0.0028(4)$	$0.0012(5)$
O3	$0.0348(5)$	$0.0249(5)$	$0.0264(5)$	$0.0084(4)$	$0.0165(4)$	$0.0053(4)$
C3	$0.0206(6)$	$0.0218(6)$	$0.0176(6)$	$-0.0016(5)$	$0.0040(5)$	$-0.0038(5)$
C4	$0.0192(6)$	$0.0197(6)$	$0.0214(6)$	$-0.0029(5)$	$0.0046(5)$	$-0.0027(5)$
C4A	$0.0185(6)$	$0.0173(6)$	$0.0164(6)$	$0.0023(5)$	$0.0000(4)$	$0.0026(5)$
C5	$0.0180(6)$	$0.0232(6)$	$0.0182(6)$	$0.0004(5)$	$0.0007(5)$	$-0.0003(5)$
C6	$0.0227(6)$	$0.0231(7)$	$0.0175(6)$	$0.0046(5)$	$0.0029(5)$	$0.0028(5)$
C7	$0.0266(7)$	$0.0237(7)$	$0.0167(6)$	$0.0021(5)$	$0.0016(5)$	$-0.0036(5)$
C8	$0.0235(6)$	$0.0220(6)$	$0.0201(6)$	$-0.0013(5)$	$0.0016(5)$	$-0.0028(5)$
C8A	$0.0177(6)$	$0.0189(6)$	$0.0175(6)$	$0.0009(5)$	$0.0004(5)$	$0.0005(5)$
C9	$0.0155(6)$	$0.0183(6)$	$0.0190(6)$	$-0.0012(4)$	$0.0008(4)$	$-0.0016(5)$

Geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$)

O1-C6	1.2337 (15)	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9900
C1-C2	1.5319 (16)	C4-H4B	0.9900
C1-C8A	1.5373 (16)	C4A-C5	1.3443 (17)
C1-H1A	0.9900	C4A-C8A	1.5106 (16)
C1-H1B	0.9900	C5-C6	1.4597 (17)
O2-C9	1.2114 (15)	C5-H5	0.9500
C2-C9	1.5119 (16)	C6-C7	1.5006 (17)
C2-C3	1.5395 (16)	C7-C8	1.5290 (17)
C2-H2	1.0000	C7-H7A	0.9900
O3-C9	1.3315 (15)	C7-H7B	0.9900
O3-H3	0.888 (19)	C8-C8A	1.5287 (17)
C3-C4	1.5323 (16)	C8-H8A	0.9900
C3-H3A	0.9900	C8-H8B	0.9900

sup-4

supplementary materials

C3-H3B	0.9900
C4-C4A	1.5038 (17)
C2-C1-C8A	113.85 (10)
C2- $21-\mathrm{H} 1 \mathrm{~A}$	108.8
C8A-C1-H1A	108.8
C2-C1-H1B	108.8
C8A-C1-H1B	108.8
H1A-C1-H1B	107.7
C9-C2-C1	110.17 (10)
C9-C2-C3	108.79 (9)
C1-C2-C3	109.67 (9)
C9- $\mathrm{C} 2-\mathrm{H} 2$	109.4
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	109.4
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	109.4
C9-O3-H3	110.2 (12)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	110.47 (9)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.6
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.6
C4-C3-H3B	109.6
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.6
H3A-C3-H3B	108.1
C4A-C4-C3	112.89 (10)
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.0
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.0
C4A-C4-H4B	109.0
C3-C4-H4B	109.0
H4A-C4-H4B	107.8
C5-C4A-C4	121.19 (11)
C5-C4A-C8A	122.59 (11)
C4-C4A-C8A	116.14 (10)
C8A-C1-C2-C9	175.69 (9)
C8A-C1-C2-C3	55.97 (13)
C9-C2-C3-C4	-177.89 (10)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-57.33 (13)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}$	53.90 (13)
C3-C4-C4A-C5	134.81 (12)
C3-C4-C4A-C8A	-48.36 (14)
C4-C4A-C5-C6	171.69 (11)
C8A-C4A-C5-C6	-4.94 (18)
C4A-C5-C6-O1	177.19 (12)
C4A-C5-C6-C7	-5.68 (17)
O1-C6-C7-C8	-147.35 (12)
C5-C6-C7-C8	35.57 (15)

C8A-H8A1	1.0000
C4A-C5-C6	122.56 (11)
C4A-C5-H5	118.7
C6-C5-H5	118.7
O1-C6-C5	120.66 (11)
O1-C6-C7	122.28 (11)
C5-C6-C7	117.00 (10)
C6-C7-C8	111.03 (10)
C6-C7-H7A	109.4
C8-C7-H7A	109.4
C6-C7-H7B	109.4
C8-C7-H7B	109.4
H7A-C7-H7B	108.0
C8A-C8-C7	111.88 (10)
C8A-C8-H8A	109.2
C7-C8-H8A	109.2
C8A-C8-H8B	109.2
C7-C8-H8B	109.2
H8A-C8-H8B	107.9
C4A-C8A-C8	111.88 (10)
C4A-C8A-C1	111.57 (9)
C8-C8A-C1	109.47 (10)
C4A-C8A-H8A1	107.9
C8-C8A-H8A1	107.9
C1-C8A-H8A1	107.9
$\mathrm{O} 2-\mathrm{C} 9-\mathrm{O} 3$	122.57 (11)
$\mathrm{O} 2-\mathrm{C} 9-\mathrm{C} 2$	123.90 (11)
O3-C9-C2	113.51 (10)
C6-C7-C8-C8A	-55.49 (14)
C5-C4A-C8A-C8	-15.56 (16)
$\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 8$	167.65 (10)
C5-C4A-C8A-C1	-138.58 (12)
C4-C4A-C8A-C1	44.63 (14)
C7-C8-C8A-C4A	45.26 (13)
C7-C8-C8A-C1	169.47 (10)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	-48.74 (13)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 8$	-173.13 (9)
C1-C2-C9-O2	-37.96 (15)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 9-\mathrm{O} 2$	82.29 (14)
C1-C2-C9-O3	143.64 (10)
C3-C2-C9-O3	-96.11 (12)

Hydrogen-bond geometry (\AA, ${ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O1}^{\mathrm{i}}$	$0.888(19)$	$1.79(2)$	$2.6797(13)$	$174.8(17)$

supplementary materials

$\mathrm{C} 2 — \mathrm{H} 2 \cdots \mathrm{O} 2^{\mathrm{ii}}$	1.00	2.40	$3.3191(15)$	152
$\mathrm{C} 7 — \mathrm{H} 7 \mathrm{~A} \cdots \mathrm{O} 2^{\mathrm{iii}}$	0.99	2.47	$3.3708(15)$	151

Symmetry codes: (i) $x+1,-y+3 / 2, z-1 / 2$; (ii) $-x+1, y-1 / 2,-z+1 / 2$; (iii) $x,-y+3 / 2, z+1 / 2$.

Fig. 1

supplementary materials

Fig. 2

